Unit 6 Review Guide

A. Use the distance formula to calculate the distance between two points.

a. Find the distance between the given points: A(-3, 1) & B(-5, -8)

$$d = \sqrt{(-5 - (-3))^2 + (-8 - 1)^2}$$

$$d = \sqrt{4 + 81}$$

$$d = \sqrt{85}$$

b. Find the length of the segment that has the endpoints (0, 0) and (3, 4).

$$d = \sqrt{(3-0)^2 + (4-0)^2}$$

$$d = \sqrt{9+14}$$

$$d = 5$$

- B. Use the midpoint formula to calculate the midpoint or an endpoint when given the midpoint.
- a. Find the midpoint of the segment that has the endpoints (-6, 9) and (2, 3).

$$-6+2$$
 $9+3$ $(-2,6)$

b. Find the coordinates of the other endpoint of a segment with an endpoint of A(-2, 0) and a midpoint M(3, -1).

$$\frac{x-3}{2}=3$$
 $\frac{y-0}{2}=-1$
 $x-2-6$ $y=-3$
 $= x=8$ $[8,-3]$

- C. Find the area and perimeter of a figure in the coordinate plane
- a. Find the perimeter of the following figure:

$$\sqrt{(2)^{2}+(4)^{2}}$$

$$CD = \sqrt{4+1}p$$

$$CD = \sqrt{20}$$

b. Find the area of the following figure:

c. Find the area and perimeter of the following figure:

$$A = (4.5)(4.5)$$
 $A = 20.25$

N. Convert the equation of a circle from general to standard form

a.
$$x^2 + y^2 + 8x - 2y - 64 = 0$$

$$x^{2}+8x+16+y^{2}-2y+1=64+16+1$$

 $(x+4)^{2}+(y-1)^{2}=81$

Center: (-4, 1) Radius: _____
O. Determine if a point is on, inside, and outside the circle

a. Circle C has a center of (3, 4) and a radius of 5. Where does the point (0, 9) lie on circle C? Show your evidence (work).

$$(x-3)^2 + (y-4)^2 = 25$$

 $(-3)^2 + (5)^2$
9+25 Outside
34

Rules/Formulas I Need to Memorize:

Midpoint:

General Form of a Circle:

Slope of Parallel Lines:

Slope of Perpendicular Lines:

b.
$$2x^2 + 2y^2 + 8x - 4y - 72 = 0$$

$$x^{2}+4x+4+y^{2}-2y+1=36+4+1$$

 $(x+2)^{2}+(y-1)^{2}=41$

Center:
$$(-2, 1)$$
 Radius: $\sqrt{41} \approx 6.4$

b. Circle C has a center of (3, 2) and a radius of 3. Where does the point (5, 4) lie on circle C?

$$(x-3)^{2} + (y-2)^{2} = 9$$

Linear Equation Forms:

Slope-intercept Form: y = mx + b

Point-slope Form: $y - y_1 = m(x - x_1)$

Standard Form: Ax + By = C

Distance:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Partitionina:

$$(x, y) = \left(x_1 + \frac{a}{a+b}(x_2 - x_1), y_1 + \frac{a}{a+b}(y_2 - y_1)\right)$$

Area Formulas:

Triangle

 $A = \frac{1}{2}bh$

Rectangle

A = bh

Pythagorean Theorem:

$$a^2 + b^2 = c^2$$

Standard Form of a Circle:

$$(x-h)^2 + (y-k)^2 = r^2$$

Learning Target #3: Equations of Circles

G. Determine the center and radius of a circle from an equation or graph.

 $1 x^2 + v^2 = 24$

Radius: 4, 9

- H. Write the equation of a circle when given the graph, center and radius, or two points on the circle.

a.

b. Write the equation of a circle centered at the origin with a radius of $\sqrt{27}$

- c. Write the equation of a circle given a center at (-6, 1) and a radius of 4.

 $(x+6)^2+(y-1)^2=16$

d. Write the equation of a circle given a center at (-2, 1) and a point of (3,2).

 $(x+2)^2 + (y-1)^2 = 26$

I. Convert the equation of a circle from standard to general form

a.
$$(x + 4)^2 + (y - 2)^2 = 9$$

X2+8X+10+43-4A+4=9

b. Center at (-5, 3) and a radius of 3

$$(x+5)^{2}+(y-3)^{2}=9$$

 $x^{2}+10x+25+y^{2}-by+9=9$
 $x^{2}+y^{2}+10x-by+25=0$

- D. Partition a line segment on the coordinate plane
- a. Find the coordinate of point P that lies along the directed line segment from A(1, 5) to B(6, 10) and partitions the segment in the ratio of 3 to 2.

b. Find the coordinates of the point P that lies along the directed segment from A(1,0) to B(7,3) and partitions the segment in the ratio of 2:1.

E. Determine if a pair of lines are parallel, perpendicular, or neither. Explain why.

$$y = -2x + 4$$

$$y = \frac{1}{2}x - 5$$

Perpendicular

b.
$$2x + 4y = 8$$

$$3x + 6y = -6$$

b.
$$2x + 4y = 8$$
 $y = -\frac{2}{4}x + 2$ $y = -\frac{1}{2}x + 2$

$$y = -\frac{3}{6}x - 1$$

Parallell Same Slopes

- F. Given the slope and a point on a line, determine the equation of a line parallel or perpendicular to the original line
- a. Write an equation of a line that is parallel to y = 2x 8and passes through the point (3,10).

b. Write an equation of a line that is perpendicular to
$$y = 1/3x - 1$$
 and passes through the point (6, 3).

$$3 = -3(6) + 6$$

$$3 = -18+b$$

$$21 = b$$

$$y = -3x + 21$$