Welcome to class!

-All cell phones in holder.

Time for a Quick Check-no calculators.

$$log_2 16 + log_5 125$$

 $log_2 2^4 + log_5 5^3 4log_2 2 + 3log_5 5$
 $4 + 3 = 7 4 + 3$

Applications of LOGS

When applying logs to real-world situations, we will still use the same 4 formulas from last unit.

Growth:	Decay:
A=P(1+r)t	A=P(1-r)t
Compound Interest: $A = P(1+f_{0})^{n \cdot t}$	Compounded Continuously: $A = Pe^{r+}$

Now that we know how to solve logs we will be solving not only for A and P, but for rate (r) and time (t).

Example 1: \$500 is deposited in an account that pays 2% annual interest compounded continuously. Approximately how many years will it take for the account to reach \$1,000?

$$A = Pe^{rt}$$
 $1000 = 500e^{.02t}$
 $2 = e^{.02t}$
 $1n = 0.02t$
 $34.7 = t$

Example 2: A town of 1,000

people is experiencing an increase in population due to several new business openings. If the population increases at a rate of 5% per year, approximately how many years will it take for there to be 20,000 people in the town?

$$A = P(1+r)^{t}$$

$$20000 = 1000(1+.05)^{t}$$

$$20 = (1.05)^{t}$$

$$109_{1.05}(20) = t$$

$$61.4 = t$$

$$61.4 \text{ years}$$

Example 3: You paid

\$42,550 for a new car. If after 5 years the car is worth \$30,000, at what rate does the car decrease?

$$A = P(1-r)^{t}$$

$$3000 = 42.550(1-r)^{5}$$

$$5\sqrt{.71} = \sqrt{(1-r)^{5}}$$

$$.933 = 1-(\frac{1-r}{-1-1})$$

$$-.067 = -(\frac{1-r}{-1})^{6}$$

$$0.07 = -(\frac{1-r}{-1})^{6}$$

Example 4: Brian would like

to purchase a boat as a graduation present for himself. He deposits \$5,000 into an account that pays 7.5% interest compounded quariety. If Brian needs \$50,000 in order to purchase the boat, how long will it take him to save enough money?

$$A = P(1 + \frac{1}{4})^{4t}$$

$$50000 = 5000(1 + \frac{.075}{4})^{4t}$$

$$10 = (1.01875)^{4t}$$

$$1091.01875(10) = 4t$$

$$30.99 = t$$

$$31 / e^{arS}$$