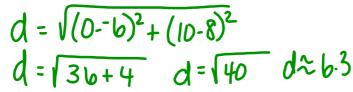
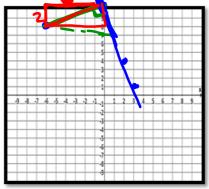
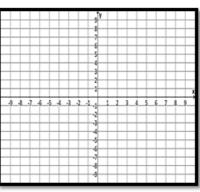

Warm-up

1. Find the distance from the point (-2, 4) to the line y = 2x - 2. Round to the nearest tenth.


Distance (-2,4) (2,2)




2. Find the distance from the point (-6, 8) to the line y = -3x + 10. Round to the negrest tenth.

Distance (-6,8) (0,10)

3. Find the distance from the point (3, 8) to the line $y = \frac{1}{5}x - 3$. Round to the nearest tenth.

Homework Answers

Parallel and Perpendicular

lines

2)
$$y = -\frac{8}{3}x - 5$$

4)
$$y = -\frac{6}{7}x - \frac{5}{7}$$

6)
$$y = \frac{1}{5}x - 4$$

8)
$$y = 3x - 5$$

10)
$$x = -4$$

Distance

2) (h, -3), (1, 9), distance = 13 units

4) (0, p), (–8, 5), distance = 8 units

$$8 = \sqrt{(6-8)^2 + (p-5)^2}$$

$$64 = 64 + (p-5)^2$$

6) (g, 9), (8, 9), distance = 9 units

 The endpoints of the diagonal of a parallelogram are (-4, 2) and (-7, z) and the length is 3 units. Find the value of z.

$$13 = \sqrt{(h-1)^{2} + (-3-9)^{2}}$$

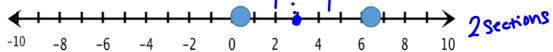
$$169 = (h-1)^{2} + 144$$

$$25 = (h-1)^{2}$$

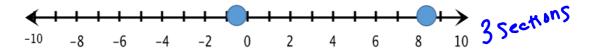
$$\pm 5 = h-1$$

$$\pm 1$$

$$1 = 1$$


$$1 = 1$$

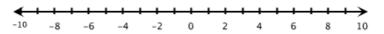
Partitioning a Segment in 1 & 2 Dimensions


You have already learned how to calculate the midpoint of a line segment. Think back...

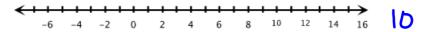
- How many segments does the midpoint split a segment into?
- Are these segments equal in length?

This is called a 1 to 1 ratio (1:1), which means the length of the first segment is one times as big (or equal to) as the second segment. Since the ratio is 1:1, you can also think of it as dividing a segment into two equal parts.

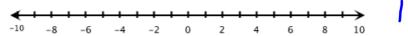
A 2:1 ratio would be interpreted as a segment being divided into three equal parts (2 + 1) with two equal parts representing the "2" in the ratio and the other remaining equal part representing the "1".

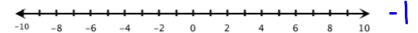

When we divide or separate a line segment, we are **partitioning the segment**. Today, we are going to learn how to partition a segment using a given ratio, other than 1:1 (midpoint). When partitioning a segment, it is necessary to determine the total number of parts that the line segment must be divided into. In the following ratios below, determining the total number of parts:

a. 2:5 b. 3:5 c. 1:2 d. 3:8
7 sections 8 3


Partitioning a Line Segment on a Number Line

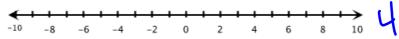
Partitioning Segments by a Ratio



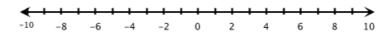

2) A is at -2 and B is at 14. Find the point, T, so that T partitions A to B in a 3:1 ratio.

3) A is at -2 and B is at 7. Find the point, T, so that T partitions A to B in a 1:2 ratio.

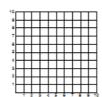
4) A is at -5 and B is at 5. Find the point, T, so that T partitions A to B in a 2:3 ratio.



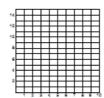
5) A is at -6 and B is at 9. Find the point, T, so that T partitions A to B in a 3:2 ratio.



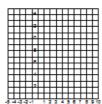
7) A is at 2 and B is at 7. Find the point, T, so that T partitions A to B in a 2:3 ratio.



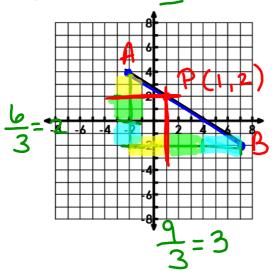
8) A is at -4 and B is at 10. Find the point, T, so that T partitions A to B in a 3:4 ratio.



Challenge: Plot points A and B and then find the coordinates of point T.

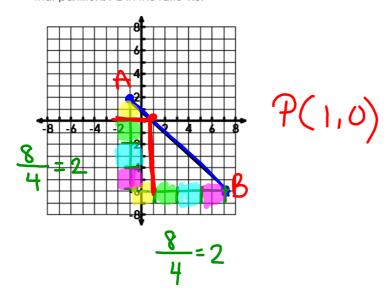

9) Find the coordinates of T that partitions A(2, 3) to B(5, 9) in a 1:2 ratio.

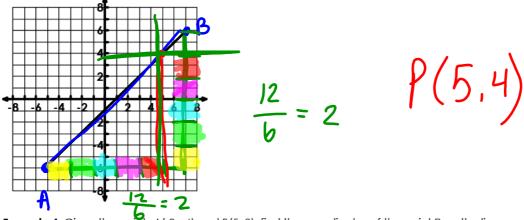
10) Find the coordinates of T that partitions A(1, 4) to B(7, 13) in a 1;2 ratio.


11) Find the coordinates of T that partitions A(-2, 1) to B(8, 11) in a 2:3 ratio.

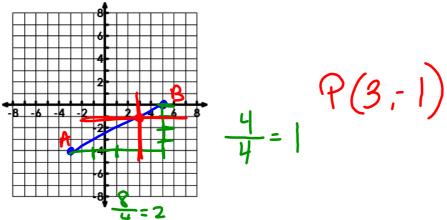
Partitioning a Segment in Two Dimensions

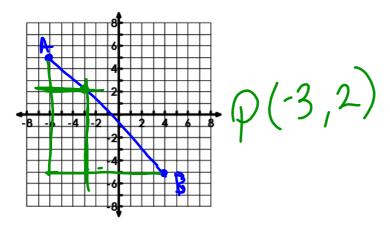
Partitioning a segment in two dimensions means you are partitioning a line segment in a coordinate plane. It is very similar to partitioning a segment in one dimension except instead of multiplying your fraction by the length; you will be multiplying by the rise (y-coordinate) and run (x-coordinate) of the segment.


Example 1: Given the points A(-2, 4) and B(7, -2), find the coordinates of the point P on the line segment AB that partitions AB in the ratio 1:2.


Partitioning in Two Dimensions:

- 1. Plot points (x1, y1) & (x2, y2).
- 2. Determine your slope ($\frac{rise}{run}$).
- 3. Multiply the **rise** by the fraction that represents the first part of the ratio $(\frac{a}{a+b})$.
- 4. Multiply the **run** by the fraction that represents the first part of the ratio $(\frac{a}{a+b})$.
- 5. Go back to point A and plot a point using your new rise over run value.
- 6. The plotted point represents the given ratio.


Example 2: Given the points A(-1, 2) and B (7, -6), find the coordinates of the point P on the line segment AB that partitions AB in the ratio 1:3.


Example 3: Given the points A(-5, -6) and B (7, 6), find the coordinates of the point P on the line segment AB that partitions AB in the ratio 5:1.

Example 4: Given the points A(-3, -4) and B(5, 0), find the coordinates of the point P on the line segment AB that partitions AB in the ratio 3 to 1.

Example 5: Given the points A(-6, 5) and B(4, -5), find the coordinates of the point P on the line segment AB that partitions AB in the ratio 3:7.

