Unit 3 Dilation and Similarity

Learning Target #1: Dilations & Similar Figures

MGSE9-12.G.SRT.1: Verify experimentally the properties of dilations given by a center and a scale factor.
a. The dilation of a line not passing through the center of the dilation results in a parallel line and leaves a line passing through the center unchanged.

b. The dilation of a line segment is longer or shorter according to the ratio given by the scale factor. MGSE9-12.G.SRT.2: Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain, using similarity transformations, the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

Learning Target #2: Similar Triangles and Proofs

MGSE9-12.G.SRT.2: Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain, using similarity transformations, the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. MGSE9-12.G.SRT.3: Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

MGSE9-12.G.SRT.4: Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, (and its converse); the Pythagorean Theorem using triangle similarity

MGSE9-12.G.SRT.5: Use congruence and <u>similarity</u> criteria for triangles to solve problems and to prove relationships in geometric figures.

Look at the standards above, create 2 learning goals on the space provided for the unit
1
_
2.

Unit 3 Dilation and Similarity

Table of Contents

- 1) Dilation
- 2) Triangle Similarity
- 3) Triangle Similarity Proofs

Dilation - transformation that produces an image that is the Same Shape as the original but a different Size.

- A dilation is Similar to the original figure.
- Dilations are centered around the origin (0, 0), unless otherwise stated.

- If the scale factor is greater than 1, the figure becomes entargement (larger)
- If the scale factor is between 0 and 1, the figure becomes Recluction (Smaller)

Rule: $(x,y) \rightarrow (x \text{ multiplied by } k, y \text{ multiplied by } k)$ where k represents the scale factor.

Example 1: If the scale factor is 3, how would you write the rule?

Example 2:

Triangle ABC has vertices A (0, 2), B (4, 4), and C (-1, 4).

What are the vertices of its image with a scale factor of 4?

$$A(0,2)$$
 (X,y) $A'(0,8)$
 $B(4,4) \rightarrow V$ $B'(16,16)$
 $C(-1,4)$ $(4x,4y)$ $C'(-4,16)$

Example 3:

Triangale PQR has vertices P(-2, 4), Q(4, 4), and R(4, -2). It is dilated by a scale factor of $\frac{1}{2}$.

a) What are the coordinates of the image?

$$P(-2,4)$$
 $P'(-1,2)$ $Q(4,4) \rightarrow (\frac{1}{2}x,\frac{1}{2}y) Q'(2,2)$ $Q'(2,-1)$

b) First graph the first coordinates. Then graph the new image after the dilation.

Create a triangle
$$A (15,2) \quad Point$$

$$B (22,2) \quad (10,3)$$

$$C (18,7)$$