Warm up If $\triangle AHR \cong \triangle KDT$ which sides and angles are congruent? Example: <A is congruent to <K 1-2. Use the diagrams to create a congruence statement for each set of congruent triangles. 1. 2. G H ABDF = △PLN △DFB = △LNP △FBD = △NPL ADCB= AGHF ACBD = AHFG ABDC = AF6H - 3-5. Name the corresponding angles and sides for each pair of congruent triangles. - 3. ∆QRS≅ ∆WXY ΔAFH ≅ ΔCGJ 5. Suppose \triangle ABC \cong \triangle EFG. For each of the following, name the corresponding \wp - g.ZA ZE - b.∠BCA ∠ FGE - c. AC EG - d.∠F ∠B - e. ZGEF ZCAB - f. GE CA | Need MIP | | |---------------|--------------------| | 0-6
Points | 3 yellow
2 Blue | | 7-14 | 3 Blue
2 Green | | 15-20 | 2 Blue
4 Green | Yellow Blue Green # Triangle Congruency Book | Reason | |--------| |--------| | <u> </u> | | |----------------------------------|--| | Side-Side Congruence (SSS) | If three sides of a triangle are congruent to three sides of another triangle, then the triangles are congruent. | | Side-Angle-Side Congruence (SAS) | If two sides and the included angle of a triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent. | | Angle-Side-Angle Congruence | If two angles and the included side of a triangle are
congruent to two angles and the included side of another
triangle, then the triangles are congruent. | | Angle-Angle-Side Congruence | If two angles and a non-included side of a triangle are congruent to two angles and the corresponding non-included side of another triangle, then the triangles are congruent. | | Hypotenuse-Leg Congruence | If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent. | | СРСТС | Corresponding parts of congruent triangles are congruent. | △ = △ SSS, SAS, ASA, AAS, HL Statement Reason Corresponding parts of = △s are = **Proof** Copy and complete the proof. **GIVEN:** $\overline{AB} \cong \overline{CB}$, D is the midpoint of \overline{AC} . **PROVE:** $\triangle ABD \cong \triangle CBD$ ### **Statements** # 1. $\overline{AB} \cong \overline{CB}$ **2.** D is the midpoint of \overline{AC} . $$3.\overline{AD}\cong\overline{CD}$$ **4.** $$\overline{BD} \cong \overline{BD}$$ **5.** $$\triangle ABD \cong \triangle CBD$$ ### Reasons **Proof** Copy and complete the proof. GIVEN: $$\overline{HI} \cong \overline{JK}$$, $\overline{IJ} \cong \overline{KH}$ **PROVE:** $\triangle HIJ \cong \triangle JKH$ | Statements | Reasons | |--------------|-------------------------------------| | 1. 2 11 2 17 | 1. Given | | 2? == = - | 2. Given | | 3. ? IS= KH | 3. Reflexive Property of Congruence | | 4. ? SH = SH | 4. SSS Congruence Postulate | | DHITE DIKH | | **Proof** Copy and complete the proof. GIVEN: $\overline{WX} \cong \overline{YX}$, Z is the midpoint of \overline{WY} . **PROVE:** $\triangle WXZ \cong \triangle YXZ$ | Statements | Reasons | |--|-------------------------------------| | 1. $\frac{?}{NX} \approx \overline{V_X}$ | 1. Given | | 2. ? Z is the midpoint | 2. Given | | 3. <u>?</u> \(\frac{7}{\sqrt{2}}\)\(\frac{2}{\sqrt{2}}\) | 3. Definition of Midpoint | | 4. 2 > 2 2 | 4. Reflexive Property of Congruence | | 5. <u>?</u> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | 5. SSS Congruence Postulate | | $-\Delta NXZ \cong \Delta YXZ$ | | **Proof** Copy and complete the proof. **GIVEN:** *B* is the midpoint of \overline{AE} . B is the midpoint of \overline{CD} . **PROVE:** $\triangle ABD \cong \triangle EBC$ ### Statements - **1.** B is the midpoint of \overline{AE} . - 3. *B* is the midpoint of \overline{CD} . - 5. $\angle ABD \cong \angle EBC$ - **6.** $\triangle ABD \cong \triangle EBC$ ### Reasons - 1. ? Given - 2. Definition of midpoint - 4. Definition of midpoint 5. Vert LS are = **Proof** Copy and complete the proof. GIVEN: $\overline{QS} \cong \overline{PR}$, $\overline{PS} \perp \overline{RS}$, $\overline{QR} \perp \overline{RS}$ **PROVE:** $\triangle PRS \cong \triangle QSR$ | Statements | Reasons | |---|-----------------------------------| | 1. $\overline{QS} \cong \overline{PR}$ | 1. Given | | 2. $\overline{PS} \perp \overline{RS}$, $\overline{QR} \perp \overline{RS}$ | 2. Given | | 3. $\angle S$ and $\angle R$ are right angles. | 3. 2 Def, of 1 | | mcs=90°
4. 2 mc R=90° | 4. Definition of a right triangle | | 5. $\overline{RS} \cong \overline{SR}$ | 5. ? Reflexive | | 6. $\triangle PRS \cong \triangle QSR$ | 6. <u>?</u> H L | | Properties of Congruence | | |----------------------------------|---| | Reflexive Property | $\overline{AB} \cong \overline{AB}; \ \angle A \cong \angle A$ | | Symmetric Property | If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$. | | | If $\angle A \cong \angle B$, then $\angle B \cong \angle A$. | | Transitive Property | If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$. | | | If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$. | | Addition Postulates | | | Segment Addition Postulate | If three points A , B , and C are collinear and B is between A and C , then $AB + BC = AC$. | | Angle Addition Postulate | If point B is in the interior of $\angle AOC$, then | | | $m\angle AOB + m\angle BOC = m\angle AOC.$ | | Angles | | | Congruent Supplements Theorem | If two angles are supplementary to the same angle, then the two angles are congruent. | | Congruent Complements
Theorem | If two angles are complementary to the same angle, then the two angles are congruent. | | Linear Pair Postulate | If two angles form a linear pair, then they are supplementary. | | Right Angle Congruence Theorem | All right angles are congruent. | | Vertical Angle Theorem | Vertical angles are congruent. | | Parallel Lines | | |--|--| | Corresponding Angles Postulate | If two parallel lines are cut by a transversal, then the corresponding angles formed by the transversal are congruent. | | Converse of Corresponding
Angles Postulate | If two lines are cut by a transversal so that the corresponding angles formed by the transversal are congruent, then the lines are parallel. | | Alternate Interior Angles
Theorem | If two parallel lines are cut by a transversal, then the alternate interior angles formed by the transversal are congruent. | | Converse of Alternate Interior
Angles Theorem | If two lines are cut by a transversal so that the alternate interior angles formed by the transversal are congruent, then the lines are parallel. | | Same-Side Interior Angles
Theorem | If two parallel lines are cut by a transversal, then the same-side interior angles formed by the transversal are supplementary. | | Converse of Same-Side Interior
Angles Theorem | If two lines are cut by a transversal so that the same-
side interior angles formed by the transversal are
supplementary, then the lines are parallel. |